Effect of Differential N-linked and O-linked Mannosylation on Recognition of Fungal Antigens by Dendritic Cells

نویسندگان

  • Jennifer S. Lam
  • Haibin Huang
  • Stuart M. Levitz
چکیده

BACKGROUND An experimental approach for improving vaccine efficacy involves targeting antigens to mannose receptors (MRs) on dendritic cells (DCs) and other professional antigen presenting cells. Previously, we demonstrated that mannosylated Pichia pastoris-derived recombinant proteins exhibited increased immunogenicity compared to proteins lacking mannosylation. In order to gain insight into the mechanisms responsible for this observation, the present study examined the cellular uptake of the mannosylated and deglycosylated recombinant proteins. METHODOLOGY/PRINCIPAL FINDINGS Utilizing transfected cell lines, roles for the macrophage mannose receptor (MMR, CD206) and DC-SIGN (CD209) in the recognition of the mannosylated, but not deglycosylated, antigens were demonstrated. The uptake of mannosylated antigens into murine bone marrow-derived DCs (BMDCs) was inhibited by yeast mannans (YMs), suggesting a mannose-specific C-type lectin receptor-dependent process, while the uptake of deglycosylated antigens remained unaffected. In particular, antigens with both N-linked and extensive O-linked mannosylation showed the highest binding and uptake by BMDCs. Finally, confocal microscopy studies revealed that both mannosylated and deglycosylated P. pastoris-derived recombinant proteins localized in MHC class II+ compartments within BMDCs. CONCLUSIONS/SIGNIFICANCE Taken together with our previous results, these data suggest that increased uptake by mannose-specific C-type lectin receptors is the major mechanism responsible for the enhanced antigenicity seen with mannosylated proteins. These findings have important implications for vaccine design and contribute to our understanding of how glycosylation affects the immune response to eukaryotic pathogens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model vaccine exploiting fungal mannosylation to increase antigen immunogenicity.

Ag mannosylation represents a promising strategy to augment vaccine immunogenicity by targeting Ag to mannose receptors (MRs) on dendritic cells. Because fungi naturally mannosylate proteins, we hypothesized that Ags engineered in fungi would have an enhanced capacity to stimulate T cell responses. Using the model Ag OVA, we generated proteins that differentially expressed N- and O-linked manno...

متن کامل

Mannosylation in Candida albicans: role in cell wall function and immune recognition

The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post-translational modifications being the addition of O- and N-linked mannosides. These polysaccharides are exposed on t...

متن کامل

O-Mannosylation of Proteins Enables Histoplasma Yeast Survival at Mammalian Body Temperatures

The ability to grow at mammalian body temperatures is critical for pathogen infection of humans. For the thermally dimorphic fungal pathogen Histoplasma capsulatum, elevated temperature is required for differentiation of mycelia or conidia into yeast cells, a step critical for invasion and replication within phagocytic immune cells. Posttranslational glycosylation of extracellular proteins char...

متن کامل

A Multifunctional Mannosyltransferase Family in Candida albicans Determines Cell Wall Mannan Structure and Host-Fungus Interactions*

The cell wall proteins of fungi are modified by N- and O-linked mannosylation and phosphomannosylation, resulting in changes to the physical and immunological properties of the cell. Glycosylation of cell wall proteins involves the activities of families of endoplasmic reticulum and Golgi-located glycosyl transferases whose activities are difficult to infer through bioinformatics. The Candida a...

متن کامل

Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction

Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007